A mean counting function for Dirichlet series and compact composition operators
نویسندگان
چکیده
We introduce a mean counting function for Dirichlet series, which plays the same role in theory of Hardy spaces series as Nevanlinna does classical theory. The existence is related to Jessen and Tornehave's resolution Lagrange motion problem. use describe all compact composition operators with symbols on Hardy--Hilbert space thus resolving problem has been open since bounded were described by Gordon Hedenmalm. main result that such operator if only its symbol satisfies decay condition at boundary half-plane.
منابع مشابه
Compact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملFredholm Weighted Composition Operators on Dirichlet Space
Let H be a Hilbert space of analytic functions on the unit disk D. For an analytic function ψ on D, we can define the multiplication operator Mψ : f → ψf, f ∈ H. For an analytic selfmapping φ of D, the composition operator Cφ defined on H as Cφf f ◦ φ, f ∈ H. These operators are two classes of important operators in the study of operator theory in function spaces 1–3 . Furthermore, for ψ and φ,...
متن کاملComposition operators and natural metrics in meromorphic function classes $Q_p$
In this paper, we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes. Also, these classes are shown to be complete metric spaces with respect to the corresponding metrics. Moreover, compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...
متن کاملComposition Series and Intertwining Operators for the Spherical Principal Series
In this paper, we consider the connected split rank one Lie group of real type F4 which we denote by F4. We first exhibit F4 as a group of operators on the complexification of A. A. Albert's exceptional simple Jordan algebra. This enables us to explicitly realize the symmetric space F4/Spin(9) as the unit ball in R with boundary S . After decomposing the space of spherical harmonics under the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107775